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Goals for the talk

* Explore basic principles of Deep Learning
* Share interesting research results

* Give intuitions for how it can be used

* What is Deep Learning?
* How is it different from other ML techniques?
* How does it work? (generally)

* Further steps
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Deep Learning

Uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation.
Each successive layer uses the output from the previous layer as input. ~ Wikipedia

* Implies use of Neural Network models
* Used to be called Connectionism (beginning of time-2000)
* Under-hyped before 2012 ("Perceptrons" by Marvin Minsky and Seymour Papert, 1969)

* Now very popular ML approach, major economic impacts, 'ai renaissance’, ect..



Structured Data

name | sex| age | height | weight
1 |Asbrey M a1 74 170
2 |Ron M 42 68 166
3 |Carl M 32 70 158
4 |Antonio M 39 72 167
5 |Deborah F 30 66 124
6 |Jacqueline F 33 66 15
7 |Helen F 26 64 121
8 |David M 30 7 158
9 |James M 53 72 175
10 |Michael M 32 69 143
11 |Ruth F 47 69 139
12 | Joal M 34 72 163
13 |Donna F 23 62 a8
14 |Roger M 36 75 160
15 [Y80 M 70 145
16 |Ehzabeth F )| 67 135
17 | Tim M 2 7 176
18 |Susan F 28 65 13

Types of Data

Unstructured Data
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Drawbacks of Neural Networks

Data hungry
- Not recommended if < 1000's of samples
- Ideally have > 100,000 samples

Can be expensive to train (tons of matrix/tensor ops & calculus)
Many practitioner choices

Debugging and interpreting individual model decisions is not trivial



Deep Learning Today

Similar to connectionist models popular in the '80s and '90s, but with:
* Web-scale data sets

* More compute (GPU, Cloud, Nvidia Tensore Cores)

* Powerful software tools (TensorFlow, Keras, Torch, ect..)

* Innovations (more layers, LSTMs, attention, faster training, ect..)

* Research interest: http://paperscape.org/



Models and Supervised Learning



Supervised Learning

Inputs

[x]

N
N

DATA

(height, age) |
[60,15] | 143
[74,25] | 214
[53,71] | 96

[y]



Supervised Learning

f([x1) =

Model
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Neural Nets: Tunable Functions

0

f(x) =mx+b

Model
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Rule-based Model

o ﬁt helpdesk_model(String data)\
() if (data.contains("where")){
return 2;
DATA }
if (data.contains("why")){
\/ return 1;
}
return 0,

\ J

inty = helpdesk_model("Where are the bananas?")
// value of y procs some behavior like keyword search

Model



Parsimonious Models

PV = nRT

Relating pressure P, volume V, number of moles n, and temperature T of an "ideal" gas via constant R
* Based on physical observations of gas molecules and their behaviors

* Not exactly true for any real gas

* But provides good approximations that are useful

"Essentially, all models are wrong, but some are useful."
-George E.P. Box
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Neural Embeddings
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Preparing the Data for Math

f([x1) = [

How to feed X into the model?

15



Preparing the Data for Math

Naive approach: cast the charf] to int[]

cat vs. bat vs. car vs. paw

"cat" =99, 97, 116]

"bat" = [98, 97, 116] word_vector = ]

"car" =[99, 97, 114] for character in word:
word_vector.append(int(character))
"paw" =[112, 97, 119]
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Preparing the Data for Math

Naive approach: cast the charf] to int[] Euclidean/L2 Distance

cat vs. bat vs. car vs. paw D(x,y) - \/Z?:l (Xi — yi)z
"cat" =[99, 97, 116]

"bat" = [98, 97, 116]

"car" = [99, 97, 114] D("cat”, "cbt") = 1
D(”Cat”, ”bat”) — 1
D("cat”, "paw") = 178

"paw" =[112, 97, 119]



Preparing the Data for Math

Basic approach: One hot encoding
cat vs. bat vs. car vs. paw
"cat" = [1,0,0,0]

[0,1,0,0]

llbatll
"car" = 1[0, 0, 1, 0]

"paw" = [0, 0, 0, 1]
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Preparing the Data for Math

Basic approach: One hot encoding
cat vs. bat vs. car vs. paw

"cat" =[1,0,0,0,...,0] D(any V@, any Vb) = 1.4142

"bat" [0,1,0,0,...,0]

"car" =10,0,1,0,...,0]

"paw" = [0,0,0, 1, ..., O]




Preparing the Data for Math

Basic approach: One hot encoding

Vocab = English Language = 50,000 words
"cat" =1[1,0,0,0, ..., 0]
"bat" =100,1,0,0,...,0]

"car" =10,0,1,0,...,0]

"paw" = [0,0,0,1, ..., 0] V2

len(cat) = 50,000

len(paw) = 50,000

ect...
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Preparing the Data for Math

Word2Vec Embeddings: try to point word vectors in directions w.r.t. lexical
meaning & preserve semantic analogies

man -> [...]

Spain \
Italy \Madrid
Germany \ Rome
woman -> [...]
-
. N '. Turkey \
el . Ank.
o oo, Woman p
", . swam )
k' king N ® @) ® Russia ———w __ pMoscow
I n g -> [' " '] TA walking v Canada Ottawa
/ O Vietnam ~————————o ___ Hanoi
swimming China Beijing

Male-Female Verb tense Country-Capital



German \ Rome
walked Ve Berlin
[ ] . ”'. Turkey \ oara
king . - ~~,‘. o . CN ‘ .swam Russla \om Moscow
e pp——]
Male-Female Verb tense Country-Capital
Expression Nearest token
Paris - France + ltaly Rome
bigger - big + cold colder
sushi - Japan + Germany bratwurst
Cu - copper + gold Au
Windows - Microsoft + Google Android

Montreal Canadiens - Montreal + Toronto

Toronto Maple Leafs
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Algebra in the Latent Space

d -8+ B8

smiling neutral neutral
woman woman man
man man woman i
with glasses without glasses without glasses woman with glasses
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"Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks" Radford et al. 2016



Works for other Data
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Pre-trained
Neural Network

Embeddings

New NLP task

Representations

Y Model

(&

New Learning Task
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Neural Network Models
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Neural Nets: Tunable Functions

0

f(x) =mx+b

Model
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Neural Nets: Tunable Functions (with many parameters)

h () = [mlc+ (6], (b )= [m]h, +[b] , ..
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Neural Nets: Tunable Functions (with many parameters)

A[x)\r ReLu(fm/x + [6])

ReLu(k) = max(0, k)
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Neural Nets: Hidden Activation Functions

F(x) = activation(mx + b)

e —

flx)=0

ReLu(x)

f(x)

f(x) =x
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Vocab Detour
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Vocab

Output (Logit) Layer

Input Layer
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Vocab

Hidden Units




Vocab

Hidden/Dense Layers
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Vocab
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Training Loop
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Neural Nets: Training Loop

Sample an (x,y) pair from data
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Neural Nets: Training Loop




Neural Nets: Training Loop

Set any negatives to 0




Neural Nets: Training Loop




Neural Nets: Training Loop




Neural Nets: Training Loop

Set any negatives to 0




Neural Nets: Training Loop




Neural Nets: Training Loop
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Neural Nets: Training Loop
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Neural Nets: Training Loop

Update parameters to reduce loss for this (x,) pair
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Neural Nets: Training Loop

Sample a new (x,y) pair and repeat until loss is
sufficiently low
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Questions?




Output Activation (binary classification)

oit te
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Output Activation (n-way classification)

a = Softmax([..])
5.0 0.636
4.0 0.234
3.0/ = [0.086
2.0 0.032
1.0 0.012
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Loss Functions

Classification:
Loss = -log(P(true _class))

Input
pixels, x

o fad] ¢

Softmax output, S(y;)

cat

dog

horse

0.71

0.26

0.04

0.02

0.00

0.98

Negative-log likelihood

-log(a) at the
correctclass

0.49

0.49

0.02

The correct class is
highlighted in red

Total:

S
>

Loss. L(a)

0.34

0.02

0.71

1.07

-log(0.0) = infinity
-log(1.0) =0

Compute the negative
log at the correct class.
This is known because
we are in training phase.

The confidence that itis
a horse is high. Lower
unhappiness

The confidence that itis
a dog is low. Higher
unhappiness
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Loss Functions

Regression:

i & .
Loss = Mean Squared Error ~ MSE= >3 (¥; - Y))".
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Feature Hierarchy
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Neural Networks

Are there
7\ patches
of lines?

Are there \
2 eyes?
-—’5 ::’Sit,? —$ yes/no
0og?
( g
Are there /
) \ 2ears?

Is there a
nose?
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Neural Networks
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Neural Networks
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Pirate Ship Rocking Chair
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"Understanding Neural Networks Through Deep Visualization" Yosinski et al., 2015




Are there
2 eyes?

Are there
2 ears?

Final Hidden Layer
Embedding
Latent Representation
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Coding up Neural Nets
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Deep Neural Networks (DNN)
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Keras
Keras Code (Python)

import numpy as np
from keras.models import Model
from keras.layers import Input, Dense

# load some data

data = np.loadtxt('./inputs.txt")
labels = np.loadtxt('./labels.txt")
inputs = Input(shape=(1,))

hidden_layer_1 = Dense(units=3, activation="relu')(inputs)

hidden_layer_2 = Dense(units=3, activation='relu')Chidden_layer_1)
predictions = Dense(units=1)(Chidden_layer_2)

# This creates a model that includes Yoo
# the Input layer and three Dense layers I
model = Model(inputs=inputs, outputs=predictions) Lem
model .compile(optimizer="sgd', |

loss="mean_squared_error',
metrics=["accuracy']) I I

model.fit(data, labels) # starts training 62




Keras
Keras Code (Python)

import numpy as np
from keras.models import Model
from keras.layers import Input, Dense

# load some data

data = np.loadtxt('./inputs.txt")
labels = np.loadtxt('./labels.txt")
inputs = Input(shape=(1,))

hidden_layer_1 = Dense(units=3, activation="relu')(inputs)

hidden_layer_2 = Dense(units=3, activation='relu')Chidden_layer_1)
predictions = Dense(units=1)(Chidden_layer_2)

# This creates a model that includes Yoo
# the Input layer and three Dense layers I
model = Model(inputs=inputs, outputs=predictions) Lem
model .compile(optimizer="sgd', |

loss="mean_squared_error',
metrics=["accuracy']) I I

model.fit(data, labels) # starts training 63




Deep Learning Frameworks

N r\
Tensor ( " Deep learning libraries: accumulated GitHub metrics
¢ -tor-ch as of April 12, 2017
Aggregate popularity (30econtrib + 1@eissues + 5¢forks)ele-3
#1: 209.25 I tcnsorflow/tensorflow
#2: 95.91 IR BVLC/caffe
K K #3:  82.36 fchollet/keras
e ra S #4: 61.69 N dmlc/mxnet
#: 41.20 IR Theano/Theano
#6: 35.00 0 deeplearning4j/deeplearning4j
; #7: 32.17 Microsoft/CNTK
t Bl Microsoft #8: 18.73 I torch/torch7
' leavin Xne CNTK #9:  17.29 | baidu/paddle
#10: 15.14 | pytorch/pytorch
#11: 14.22 |} pfnet/chainer
#12: 14.05 NVIDIA/DIGITS
#13: 12.62 tflearn/tflearn

PYTSRCH O Caffe?
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Tensorboard *

TensorFlow

SGD Trainer
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E;l Fit to screen
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Resources/Next Steps

Deep Learning Course by Andrew Ng:
https://www.coursera.org/learn/neural-networks-deep-learning

Andrej Karpathy's "Hacker's guide to Neural Networks"
http://karpathy.github.io/neuralnets/

The Deep Learning Book
http://www.deeplearningbook.org/
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End: Q&A ?
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Other stuff you can do..
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Style Transfer
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Style Transfer

done
1000 / 1000
. 3

o ey

Original photo Reference photo _  Result
(raw input) ~  (latent representation) = 4



