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* Explore basic principles of Deep Learning

* Share interesting research results

* Give intuitions for how it can be used

__________________________________________

* What is Deep Learning?

* How is it different from other ML techniques?

* How does it work? (intuitively)

* Further steps

Goals for the talk



Outline

* Deep Learning and Neural Networks

* Working with sequences

* Working with images

* Limitations & Open Questions

* QA

comments: 

-Include benchmarks against existing deployments (see if compute is no prob)

-Inject some lesser known facts for ppl that already know this stuff



Deep Learning

Uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. 
Each successive layer uses the output from the previous layer as input.

* Implies use of Neural Network models

* Used to be called Connectionism (beginning of time-2000)

* Massively under-hyped before 2012 (Perceptrons by Marvin Minsky and 
Seymour Papert, 1969)

* Now a very popular ML approach



Deep Learning

Similar to connectionist (PDP/Perceptron) models popular in the '80s and '90s, but 
with:

* Web-scale data sets

* More compute (GPU, Cloud, Nvidia Tensore Cores)

* Insanely good software tools (TensorFlow)

* Innovations (more layers, LSTMs, attention, ect..)

* Hype & attention: http://paperscape.org/



Machine Learning

Telling vs. Showing

DATA



Machine Learning

   Training Data

[ x ]  

DATA



Supervised ML

   Training Data Labels/Targets

[ x ]       [ y ]



Supervised ML

[ x ]       [ y ]

    

    f(      ) ≈

Model 



Rule-based Model

Model

int y = helpdesk_model("Where are the bananas?")
// value of y procs some behavior like keyword search

int helpdesk_model(String data){

if (data.contains("where")){
return 2;

}
if (data.contains("why")){

return 1;
}
return 0;

}

DATA



Motivation

"Truth is much too complicated to 
allow anything but approximations." 

-John Von Neumann



Supervised ML

[ x ]       [ y ]

    

    f(      ) ≈
    Model 

Regression (targets are continuous scalar values)
eg;  f(x) = 85.12  ≈  86.21

 

Classification: (targets are probability vectors)
eg;  f(x) = [0.02, 0.01, 0.95, 0.02]  ≈  [0, 0, 1, 0]



Models (Architectures) vs. Algorithms

Models Algorithms

Recurrent Neural Networks (RNN) Markov Chain Monte Carlo (MCMC)

Convolutional Neural Networks (CNN) Genetic Algs (GA)

Deep Neural Networks (DNN) Stochastic Gradient Descent (SGD)

Hidden Markov Models (HMM) Variational Bayes

Boltzmann Machines Conjugate Gradients

. . .

. . .
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High Level Takeaway



Practitioner Choices: Platforms
(cloud vs. GPU vs. CPU)



my_model.fit(algorithm='SGD', data=my_data)

Practitioner Choices: Frameworks



Tensorboard



Practitioner Choices: Data
Type of data (image, text, graphs, ect..) 

Features

Size



Supervised ML

[ x ]       [ y ]

    

    f(      ) ≈

How to feed X into the model?



Case study: Text data

Naive approach: cast the char[] to int[]

"cat" vs. "bat" vs. "fat"

cat -> [3, 1, 20]

bat -> [2, 1, 20]

fat -> [6, 1, 20]

Image of the vectors in 3 space



Case study: Text data

One hot encoding: give each word a unique sparse vector

"cat" vs. "bat" vs. "fat"

cat -> [1, 0, 0]

bat -> [0, 1, 0]

fat  -> [0, 0, 1]

Image of the vectors in 3 space



Case study: Text data

Deep Learning: Point word vectors in directions w.r.t. their meanings

"cat" vs. "bat" vs. "fat"

cat -> [x, y, z]

bat -> [x, y, z]

fat  -> [x, y, z]

Image of the vectors in 3 space



Case study: Text data



High Level Takeaway

* How are Neural Network models different from other ML models?

Takeaway: They learn to point inputs in meaningful directions w.r.t. an objective.
-you can't really do perception without a neural network.



Supervised ML

[ x ]       [ y ]

    

    f(      ) ≈

Model --"representations of data"

'Interface for leveraging important aspects of data'



Parsimonious Models

PV = RT 

Relating pressure P, volume V, temperature T of an "ideal" gas via constant R 

* Based on physical observations of gas molecules and their behaviors

* Not exactly true for any real gas

* But provides good approximations that are useful

"Essentially, all models are wrong, but some are useful." 

-George E.P. Box



Deep Learning Today

"So I'm re-writing the AI textbook right ... and we have a real 
problem because we have a Computer Vision chapter, and then Ian 
Goodfellow is writing the Deep Learning chapter and I suspect the 
Vision chapter is just gonna say: see chapter 19, and then we have 
a section on Speech Recognition that's just gonna say see chapter 
19 ... and this worries me..." -Stuart Russell



Neural Nets: Tunable Functions

f(x) = mx + b ≈ y

Model



f(x) = mx + b 

x f(x)

m 1
x 

m
3 x 

m2x 

m: nxm Matrix [    ]
b: vector [ ] or scalar

Neural Nets: Tunable Functions (with many parameters)



f(x) = S(mx + b) 

S = max(0, k)
x f(x)

m 1
x 

m
3 x 

m2x 

Neural Nets: Tunable Nonlinear Functions



Arbitrarily many parameters

f(x) = S(m2(S(m1x + b1)) + b2)
tuned via optimization

S = max(0, k)
x f(x)

m1 1
x 

m1
3 x 

m12x 

m21x m3
1 x 



Usually described in terms of Layers

     f(x) = S(m2  (S(m1x + b1)) + b2)        

x f(x)

m1 1
x 

m1
3 x 

m12x 

m2 h1 m3
 h2 

Layer 2               = h2
Layer 1 = h1



Detour: Neural Nets Vocab

x f(x)
m1 1

x 

m1
3 x 

m12x 

Layers



Neural Nets Vocab

x f(x)
m1 1

x 

m1
3 x 

m12x 

Hidden Layers



x f(x)
m1 1

x 

m1
3 x 

m12x 

Input Layer Output (Logit) Layer 

Neural Nets Vocab



Neural Nets Vocab

x f(x)
m1 1

x 

m1
3 x 

m12x 

m2 h1 m3
 h2 

Weights



Neural Nets Vocab

x f(x)
m1 1

x 

m1
3 x 

m12x 

Hidden Units



Deep Neural Networks (DNN)

x f(x)
m1 1

x 

m1
3 x 

m12x 

m2 h1 m3 h2 m4 h3 



Deep Neural Networks (DNN)

x f(x)
m1 1

x 

m1
3 x 

m12x 

m2 h1 
m3 h2 m4 h3 



Deep Neural Networks (DNN)

f(x) = m3(H2(H1(x))) + b3   ≈   y

x f(x)
m1 1

x 

m1
3 x 

m12x 

m2 h1 m3
 h2 

h2 h1 



Output Activation Functions

x f(x)
m1 1

x 

m1
3 x 

m12x 

m2 h1 m3
 h2 

f(x) = a(m3H2 + b3)  ≈   y

a(k) = k  a(k) = 1/(1+e^-k) a([k]) = soƅƭmƀƗ([k]) 

h2 h1 



Output Activation Functions

f(x) = a(m3H2 + b3)      ≈   y

a(k) = k  a(k) = 1/(1+e^-k) a([k]) = soƅƭmƀƗ([k]) 

x f(x)

m1 1
x 

m1
3 x 

m12x 

m2 h1 m3
 h2 Logistic sigmoid



Output Activation Functions

f(x) = a(m3(H2(H1(x))) + b3)  ≈ y

Softmax

a(k) = k  a(k) = 1/(1+e^-k) a([k]) = soƅƭmƀƗ([k]) 

x f(x)

m1 1
x 

m1
3 x 

m12x 

m2 h1 m3
 h2 563 0.8

-321 0.01
322 0.14
111 0.05



Neural Networks

Deep Neural Networks (DNN) -has become very general
Fully Connected Networks (FCN) -new
Artificial Neural Networks (ANN) -old

x f(x)
m1 1

x 

m1
3 x 

m12x 

m2 h1 m3
 h2 



Neural Networks

Multilayer Perceptron (MLP)

x f(x)
m1 1

x 

m1
3 x 

m12x 

m2h1 



Deep Neural Network (DNN)

Edge = weighted connection (learned) 

Nodes = inputs, hidden states

x f(x)

x * m



x

b

b b

f(x)



x

h

h

h

f(x)

x * m



x

h

h

h

f(x)

x * m

max(h, 0)



x

h

f(x)

h * m



x

h

h

h

f(x)

max(h, 0)



x

h

f(x)

h * m



x f(x)

If doing regression: Don't do non-linearity for last layer.
If doing classification: sigmoid (binary) or softmax (multi-class) 



x f(x)

h
1  * m

2

h0 * m1

x * m 0

max(h1, 0)max(h0, 0)



Loss Function

x f(x)

x * m

y==                         ?

MSE if doing regression

Cross entropy if classification: -log(P(y
true

))



x f(x)

x * m

x y

Update the weights to better fit this x -> y relationship 

(via an optimization algorithm that minimizes selected loss)



x

x * m

Sample a new (x, y) pair and repeat

y



Questions?



Short FCN Demo/results



f(x)

h
3  * M

3

h1 * M1

x * M 0

max(h1, 0)max(h0, 0)

What about sequences?

xt-2

xt-1

xt



xt-2

xt-1

Recurrent Neural Networks

xt h1 h2

* M4 * M5 

f(xt)

h1
t-1 h2

t-1

h
3  * M

3

h1 * M1

x * M 0



xt-2

xt-1

xt h1 h2

* M * M 

f(xt)

h1
t-1 h2

t-1

Set all h to [0] for first 
input x0 in sequence [X]

* M4 * M5 



xt-2

xt-1

xt h1 h2

* M4 * M5 

f(xt)

h1
t-1 h2

t-1

Or set to last h seen for 
this user/agent/ect..



"Hi"

"I'm"

"Nick" h1 h2

* M4 * M5 

f(xt)

h1
t-1 h2

t-1



"Hi"

"I'm"

"Nick" h1 h2

* M4 * M5 
 

f(xt)

h1
t-1 h2

t-1

hidden representations for 
"I'm"



"Hi"

"I'm"

"Nick" h1 h2

* M4 * M5 
 

f(xt)

h1
t-1 h2

t-1

Learning to transform past data 
into a "previous event" context



"Hi" h1 h2 f(xt)

0.0,

0.0,

0.0

0.0,

0.0,

0.0

H1
t=0 H2

t=0



"Hi" h1 h2 f(xt)

0.0,

0.0,

0.0

0.0,

0.0,

0.0

H1
t=0 H2

t=0



"Hi" h1 h2 f(xt)

0.0,

0.0,

0.0

0.0,

0.0,

0.0

H1
t=0 H2

t=0



"Hi"

∑

∑

∑

h2 f(xt)

0.0,

0.0,

0.0

0.0,

0.0,

0.0



"Hi"

"I'm"

"Nick" h1 h2

* M4 * M5 

f(xt)

h1
t-1 h2

t-1



Demo Language model ?



mx + b = y

    Data containing input and output pairs

Learning a Function



y = mx + b

Learn some parameters that make this true for as 
many (x, y) pairs possible.

Learning a Function



ML Models as Code
Linear Models (eg; Logistic Regression):
* Very simple algorithms (SUMPRODUCT)
* Fast and easy to train

Deep Neural Nets: 
* Arbitrarily complex algorithms
* Slow to train, requires GPU hardware



Deep Learning History

Timeline Turing -> 80s Yann Lecun, Hinton, Schmidhuber, Bengio

Impractical compute obstacle

Impractical data obstacle

Training algorithm had flaws



Deep Learning History

90s -> 2000s

Training algorithm figured out

Lots of excitement "connectionists"

--SVM still winning vs. Neural Nets 

Still huge compute obstacle

Still huge data obstacle



Deep Learning History
2010s -> present

Algorithms vastly expanded upon + researched
Compute solved w/ GPUs
Data solved w/ internet, smartphones, social media, ect..

Hinton students:
-Illya now director of OpenAI
-LeCun now director of FAIR
-Alex Graves (deepmind)
-Vlad Mnih (deepmind)

Michael Jordan students:
* Andrew NG
* Bengio



Deep Learning Today
Many fields currently hijacked by Deep Learning:
* Computer Vision (CV)
* Natural Language Processing (NLP)
* Speech Recognition
* Generative Modeling
* Reinforcement Learning

Fields created by Deep Learning: 
* Adversarial Machine Learning 
* Adversarial Training
* Neural Style Transfer 
* Automatic Video Generation and Alteration (?)


