
Deep Learning at RƈƂơ¹ƞleƕƀƧcƞ

Nick Knowles

Data Science Research Team
nknowles@r...

* Explore basic principles of Deep Learning

* Share interesting research results

* Give intuitions for how it can be used

__

* What is Deep Learning?

* How is it different from other ML techniques?

* How does it work? (intuitively)

* Further steps

Goals for the talk

Outline

* Deep Learning and Neural Networks

* Working with sequences

* Working with images

* Limitations & Open Questions

* QA

comments:

-Include benchmarks against existing deployments (see if compute is no prob)

-Inject some lesser known facts for ppl that already know this stuff

Deep Learning

Uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation.
Each successive layer uses the output from the previous layer as input.

* Implies use of Neural Network models

* Used to be called Connectionism (beginning of time-2000)

* Massively under-hyped before 2012 (Perceptrons by Marvin Minsky and
Seymour Papert, 1969)

* Now a very popular ML approach

Deep Learning

Similar to connectionist (PDP/Perceptron) models popular in the '80s and '90s, but
with:

* Web-scale data sets

* More compute (GPU, Cloud, Nvidia Tensore Cores)

* Insanely good software tools (TensorFlow)

* Innovations (more layers, LSTMs, attention, ect..)

* Hype & attention: http://paperscape.org/

Machine Learning

Telling vs. Showing

DATA

Machine Learning

 Training Data

[x]

DATA

Supervised ML

 Training Data Labels/Targets

[x] [y]

Supervised ML

[x] [y]

 f() ≈

Model

Rule-based Model

Model

int y = helpdesk_model("Where are the bananas?")
// value of y procs some behavior like keyword search

int helpdesk_model(String data){

if (data.contains("where")){
return 2;

}
if (data.contains("why")){

return 1;
}
return 0;

}

DATA

Motivation

"Truth is much too complicated to
allow anything but approximations."

-John Von Neumann

Supervised ML

[x] [y]

 f() ≈
 Model

Regression (targets are continuous scalar values)
eg; f(x) = 85.12 ≈ 86.21

Classification: (targets are probability vectors)
eg; f(x) = [0.02, 0.01, 0.95, 0.02] ≈ [0, 0, 1, 0]

Models (Architectures) vs. Algorithms

Models Algorithms

Recurrent Neural Networks (RNN) Markov Chain Monte Carlo (MCMC)

Convolutional Neural Networks (CNN) Genetic Algs (GA)

Deep Neural Networks (DNN) Stochastic Gradient Descent (SGD)

Hidden Markov Models (HMM) Variational Bayes

Boltzmann Machines Conjugate Gradients

. . .

. . .

Models (Architectures) vs. Algorithms

Models Algorithms

Recurrent Neural Networks (RNN) Markov Chain Monte Carlo (MCMC)

Convolutional Neural Networks (CNN) Genetic Algs (GA)

Deep Neural Networks (DNN) Stochastic Gradient Descent (SGD)

Hidden Markov Models (HMM) Variational Bayes

Boltzmann Machines Conjugate Gradients

. . .

. . .

T¯IÔ T¨³Ì

High Level Takeaway

Practitioner Choices: Platforms
(cloud vs. GPU vs. CPU)

my_model.fit(algorithm='SGD', data=my_data)

Practitioner Choices: Frameworks

Tensorboard

Practitioner Choices: Data
Type of data (image, text, graphs, ect..)

Features

Size

Supervised ML

[x] [y]

 f() ≈

How to feed X into the model?

Case study: Text data

Naive approach: cast the char[] to int[]

"cat" vs. "bat" vs. "fat"

cat -> [3, 1, 20]

bat -> [2, 1, 20]

fat -> [6, 1, 20]

Image of the vectors in 3 space

Case study: Text data

One hot encoding: give each word a unique sparse vector

"cat" vs. "bat" vs. "fat"

cat -> [1, 0, 0]

bat -> [0, 1, 0]

fat -> [0, 0, 1]

Image of the vectors in 3 space

Case study: Text data

Deep Learning: Point word vectors in directions w.r.t. their meanings

"cat" vs. "bat" vs. "fat"

cat -> [x, y, z]

bat -> [x, y, z]

fat -> [x, y, z]

Image of the vectors in 3 space

Case study: Text data

High Level Takeaway

* How are Neural Network models different from other ML models?

Takeaway: They learn to point inputs in meaningful directions w.r.t. an objective.
-you can't really do perception without a neural network.

Supervised ML

[x] [y]

 f() ≈

Model --"representations of data"

'Interface for leveraging important aspects of data'

Parsimonious Models

PV = RT

Relating pressure P, volume V, temperature T of an "ideal" gas via constant R

* Based on physical observations of gas molecules and their behaviors

* Not exactly true for any real gas

* But provides good approximations that are useful

"Essentially, all models are wrong, but some are useful."

-George E.P. Box

Deep Learning Today

"So I'm re-writing the AI textbook right ... and we have a real
problem because we have a Computer Vision chapter, and then Ian
Goodfellow is writing the Deep Learning chapter and I suspect the
Vision chapter is just gonna say: see chapter 19, and then we have
a section on Speech Recognition that's just gonna say see chapter
19 ... and this worries me..." -Stuart Russell

Neural Nets: Tunable Functions

f(x) = mx + b ≈ y

Model

f(x) = mx + b

x f(x)

m 1
x

m
3 x

m2x

m: nxm Matrix []
b: vector [] or scalar

Neural Nets: Tunable Functions (with many parameters)

f(x) = S(mx + b)

S = max(0, k)
x f(x)

m 1
x

m
3 x

m2x

Neural Nets: Tunable Nonlinear Functions

Arbitrarily many parameters

f(x) = S(m2(S(m1x + b1)) + b2)
tuned via optimization

S = max(0, k)
x f(x)

m1 1
x

m1
3 x

m12x

m21x m3
1 x

Usually described in terms of Layers

 f(x) = S(m2 (S(m1x + b1)) + b2)

x f(x)

m1 1
x

m1
3 x

m12x

m2 h1 m3
 h2

Layer 2 = h2
Layer 1 = h1

Detour: Neural Nets Vocab

x f(x)
m1 1

x

m1
3 x

m12x

Layers

Neural Nets Vocab

x f(x)
m1 1

x

m1
3 x

m12x

Hidden Layers

x f(x)
m1 1

x

m1
3 x

m12x

Input Layer Output (Logit) Layer

Neural Nets Vocab

Neural Nets Vocab

x f(x)
m1 1

x

m1
3 x

m12x

m2 h1 m3
 h2

Weights

Neural Nets Vocab

x f(x)
m1 1

x

m1
3 x

m12x

Hidden Units

Deep Neural Networks (DNN)

x f(x)
m1 1

x

m1
3 x

m12x

m2 h1 m3 h2 m4 h3

Deep Neural Networks (DNN)

x f(x)
m1 1

x

m1
3 x

m12x

m2 h1
m3 h2 m4 h3

Deep Neural Networks (DNN)

f(x) = m3(H2(H1(x))) + b3 ≈ y

x f(x)
m1 1

x

m1
3 x

m12x

m2 h1 m3
 h2

h2 h1

Output Activation Functions

x f(x)
m1 1

x

m1
3 x

m12x

m2 h1 m3
 h2

f(x) = a(m3H2 + b3) ≈ y

a(k) = k a(k) = 1/(1+e^-k) a([k]) = soƅƭmƀƗ([k])

h2 h1

Output Activation Functions

f(x) = a(m3H2 + b3) ≈ y

a(k) = k a(k) = 1/(1+e^-k) a([k]) = soƅƭmƀƗ([k])

x f(x)

m1 1
x

m1
3 x

m12x

m2 h1 m3
 h2 Logistic sigmoid

Output Activation Functions

f(x) = a(m3(H2(H1(x))) + b3) ≈ y

Softmax

a(k) = k a(k) = 1/(1+e^-k) a([k]) = soƅƭmƀƗ([k])

x f(x)

m1 1
x

m1
3 x

m12x

m2 h1 m3
 h2 563 0.8

-321 0.01
322 0.14
111 0.05

Neural Networks

Deep Neural Networks (DNN) -has become very general
Fully Connected Networks (FCN) -new
Artificial Neural Networks (ANN) -old

x f(x)
m1 1

x

m1
3 x

m12x

m2 h1 m3
 h2

Neural Networks

Multilayer Perceptron (MLP)

x f(x)
m1 1

x

m1
3 x

m12x

m2h1

Deep Neural Network (DNN)

Edge = weighted connection (learned)

Nodes = inputs, hidden states

x f(x)

x * m

x

b

b b

f(x)

x

h

h

h

f(x)

x * m

x

h

h

h

f(x)

x * m

max(h, 0)

x

h

f(x)

h * m

x

h

h

h

f(x)

max(h, 0)

x

h

f(x)

h * m

x f(x)

If doing regression: Don't do non-linearity for last layer.
If doing classification: sigmoid (binary) or softmax (multi-class)

x f(x)

h
1 * m

2

h0 * m1

x * m 0

max(h1, 0)max(h0, 0)

Loss Function

x f(x)

x * m

y== ?

MSE if doing regression

Cross entropy if classification: -log(P(y
true

))

x f(x)

x * m

x y

Update the weights to better fit this x -> y relationship

(via an optimization algorithm that minimizes selected loss)

x

x * m

Sample a new (x, y) pair and repeat

y

Questions?

Short FCN Demo/results

f(x)

h
3 * M

3

h1 * M1

x * M 0

max(h1, 0)max(h0, 0)

What about sequences?

xt-2

xt-1

xt

xt-2

xt-1

Recurrent Neural Networks

xt h1 h2

* M4 * M5

f(xt)

h1
t-1 h2

t-1

h
3 * M

3

h1 * M1

x * M 0

xt-2

xt-1

xt h1 h2

* M * M

f(xt)

h1
t-1 h2

t-1

Set all h to [0] for first
input x0 in sequence [X]

* M4 * M5

xt-2

xt-1

xt h1 h2

* M4 * M5

f(xt)

h1
t-1 h2

t-1

Or set to last h seen for
this user/agent/ect..

"Hi"

"I'm"

"Nick" h1 h2

* M4 * M5

f(xt)

h1
t-1 h2

t-1

"Hi"

"I'm"

"Nick" h1 h2

* M4 * M5

f(xt)

h1
t-1 h2

t-1

hidden representations for
"I'm"

"Hi"

"I'm"

"Nick" h1 h2

* M4 * M5

f(xt)

h1
t-1 h2

t-1

Learning to transform past data
into a "previous event" context

"Hi" h1 h2 f(xt)

0.0,

0.0,

0.0

0.0,

0.0,

0.0

H1
t=0 H2

t=0

"Hi" h1 h2 f(xt)

0.0,

0.0,

0.0

0.0,

0.0,

0.0

H1
t=0 H2

t=0

"Hi" h1 h2 f(xt)

0.0,

0.0,

0.0

0.0,

0.0,

0.0

H1
t=0 H2

t=0

"Hi"

∑

∑

∑

h2 f(xt)

0.0,

0.0,

0.0

0.0,

0.0,

0.0

"Hi"

"I'm"

"Nick" h1 h2

* M4 * M5

f(xt)

h1
t-1 h2

t-1

Demo Language model ?

mx + b = y

 Data containing input and output pairs

Learning a Function

y = mx + b

Learn some parameters that make this true for as
many (x, y) pairs possible.

Learning a Function

ML Models as Code
Linear Models (eg; Logistic Regression):
* Very simple algorithms (SUMPRODUCT)
* Fast and easy to train

Deep Neural Nets:
* Arbitrarily complex algorithms
* Slow to train, requires GPU hardware

Deep Learning History

Timeline Turing -> 80s Yann Lecun, Hinton, Schmidhuber, Bengio

Impractical compute obstacle

Impractical data obstacle

Training algorithm had flaws

Deep Learning History

90s -> 2000s

Training algorithm figured out

Lots of excitement "connectionists"

--SVM still winning vs. Neural Nets

Still huge compute obstacle

Still huge data obstacle

Deep Learning History
2010s -> present

Algorithms vastly expanded upon + researched
Compute solved w/ GPUs
Data solved w/ internet, smartphones, social media, ect..

Hinton students:
-Illya now director of OpenAI
-LeCun now director of FAIR
-Alex Graves (deepmind)
-Vlad Mnih (deepmind)

Michael Jordan students:
* Andrew NG
* Bengio

Deep Learning Today
Many fields currently hijacked by Deep Learning:
* Computer Vision (CV)
* Natural Language Processing (NLP)
* Speech Recognition
* Generative Modeling
* Reinforcement Learning

Fields created by Deep Learning:
* Adversarial Machine Learning
* Adversarial Training
* Neural Style Transfer
* Automatic Video Generation and Alteration (?)

