Deep Learning at RichRelevance

Nick Knowles

Data Science Research Team nknowles@r...

Goals for the talk

- * Explore basic principles of Deep Learning
- * Share interesting research results
- * Give intuitions for how it can be used
- * What is Deep Learning?
- * How is it different from other ML techniques?
- * How does it work? (intuitively)
- * Further steps

Outline

- * Deep Learning and Neural Networks
- * Working with sequences
- * Working with images
- * Limitations & Open Questions
- * QA

comments:

- -Include benchmarks against existing deployments (see if compute is no prob)
- -Inject some lesser known facts for ppl that already know this stuff

Deep Learning

Uses a cascade of multiple layers of nonlinear processing units for feature extraction and transformation. Each successive layer uses the output from the previous layer as input.

- * Implies use of Neural Network models
- * Used to be called *Connectionism* (beginning of time-2000)
- * Massively under-hyped before 2012 (Perceptrons by Marvin Minsky and Seymour Papert, 1969)
- * Now a very popular ML approach

Deep Learning

Similar to connectionist (PDP/Perceptron) models popular in the '80s and '90s, but with:

- * Web-scale data sets
- * More **compute** (GPU, Cloud, Nvidia Tensore Cores)
- * Insanely good **software** tools (TensorFlow)
- * Innovations (more layers, LSTMs, attention, ect..)
- * Hype & attention: http://paperscape.org/

Machine Learning

Machine Learning

Training Data

[x]

Supervised ML

Training Data

[x]

Labels/Targets

[y]

Supervised ML

$$f([x]) \approx [y]$$

Model

Rule-based Model

DATA

Model

int y = helpdesk_model("Where are the bananas?")
// value of y procs some behavior like keyword search

```
int helpdesk_model(String data){
    if (data.contains("where")){
        return 2;
    }
    if (data.contains("why")){
        return 1;
    }
    return 0;
}
```

Motivation

"Truth is much too complicated to allow anything but approximations."

-John Von Neumann

Supervised ML

Regression (targets are continuous scalar values)

eg;
$$f(x) = 85.12 \approx 86.21$$

Classification: (targets are probability vectors)

eg;
$$f(x) = [0.02, 0.01, 0.95, 0.02] \approx [0, 0, 1, 0]$$

Models (Architectures) vs. Algorithms

Algorithms
Markov Chain Monte Carlo (MCMC)
Genetic Algs (GA)
Stochastic Gradient Descent (SGD)
Variational Bayes
Conjugate Gradients

Models (Architectures) vs. Algorithms

S TALK Models	Algorithms
Recurrent Neural Networks (RNN)	Markov Chain Monte Carlo (MCMC)
Convolutional Neural Networks (CNN)	Genetic Algs (GA)
Deep Neural Networks (DNN)	Stochastic Gradient Descent (SGD)
Hidden Markov Models (HMM)	Variational Bayes
Boltzmann Machines	Conjugate Gradients

High Level Takeaway

Practitioner Choices: Platforms

(cloud vs. GPU vs. CPU)

Practitioner Choices: Frameworks

my model.fit(algorithm='SGD', data=my data)

Deep learning libraries: accumulated GitHub metrics as of April 12, 2017

Aggr	egate pop	ularity (30•contrib + 10•issues + 5•forks)•1e-3
#1:	209.25	tensorflow/tensorflow
#2:	95.91	BVLC/caffe
#3:	82.36	fchollet/keras
#4:	61.69	dmlc/mxnet
#5:	41.20	Theano/Theano
#6:	35.00	deeplearning4j/deeplearning4j
#7:	32.17	Microsoft/CNTK
#8:	18.73	torch/torch7
#9:	17.29	baidu/paddle
#10:	15.14	pytorch/pytorch
#11:	14.22	pfnet/chainer
#12:	14.05	NVIDIA/DIGITS
#13:	12.62	tflearn/tflearn

Tensorboard TensorFlow

Practitioner Choices: Data

Type of data (image, text, graphs, ect..)

Features

Size

Supervised ML

$$f([x]) \approx [y]$$

How to feed X into the model?

Naive approach: cast the char[] to int[]

"cat" vs. "bat" vs. "fat"

cat -> [3, 1, 20]

bat -> [2, 1, 20]

fat -> [6, 1, 20]

Image of the vectors in 3 space

One hot encoding: give each word a unique sparse vector

"cat" vs. "bat" vs. "fat"

cat -> [1, 0, 0]

bat \rightarrow [0, 1, 0]

fat \rightarrow [0, 0, 1]

Image of the vectors in 3 space

Deep Learning: Point word vectors in directions w.r.t. their meanings

"cat" vs. "bat" vs. "fat"

cat \rightarrow [x, y, z]

bat \rightarrow [x, y, z]

fat \rightarrow [x, y, z]

Image of the vectors in 3 space

High Level Takeaway

* How are Neural Network models different from other ML models?

Takeaway: They learn to point inputs in meaningful directions w.r.t. an objective.
-you can't *really* do **perception** without a neural network.

Supervised ML

$$f([x]) \approx [y]$$

Model -- "representations of data"

'Interface for leveraging important aspects of data'

Parsimonious Models

PV = RT

Relating pressure P, volume V, temperature T of an "ideal" gas via constant R

- * Based on physical observations of gas molecules and their behaviors
- * Not exactly true for any real gas
- * But provides good approximations that are useful
- "Essentially, all models are wrong, but some are useful."
- -George E.P. Box

Deep Learning Today

"So I'm re-writing the AI textbook right ... and we have a real problem because we have a Computer Vision chapter, and then Ian Goodfellow is writing the Deep Learning chapter and I suspect the Vision chapter is just gonna say: see chapter 19, and then we have a section on Speech Recognition that's just gonna say see chapter 19 ... and this worries me..." -Stuart Russell

Neural Nets: Tunable Functions

$$f(x) = mx + b \approx y$$

Model

Neural Nets: Tunable Functions (with many parameters)

$$f(x) = mx + b$$

m: nxm Matrix [] b: vector [] or scalar

Neural Nets: Tunable Nonlinear Functions

$$f(x) = S(mx + b)$$

$$S = \max(0, k)$$

Arbitrarily many parameters

tuned via optimization

$$f(x) = S(m2(S(m1x + 61)) + 62)$$

$$S = \max(0, k)$$

Usually described in terms of Layers

Layer 2 =
$$h2$$

$$F(x) = S(m2) \left(S(m1x + b1) \right) + b2$$

Detour: Neural Nets Vocab

Layers

Neural Nets Vocab

Hidden Layers

Neural Nets Vocab

Input Layer

Output (Logit) Layer

Neural Nets Vocab

Weights

Neural Nets Vocab

Hidden Units

Deep Neural Networks (DNN)

Deep Neural Networks (DNN)

Deep Neural Networks (DNN)

$$f(x) = m3(H2(H1(x))) + b3 \approx y$$

Output Activation Functions

$$f(x) = a(m3H2 + b3) \approx y$$

$$a(k) = k \qquad a(k) = 1/(1+e^{k}) \qquad a([k]) = softmax([k])$$

Output Activation Functions

$$f(x) = a(m3H2 + b3) \approx y$$

$$a(k) = k$$

$$a(k) = 1/(1+e^{k})$$

$$a([k]) = softmax([k])$$

Output Activation Functions

0.8
0.01
0.14
0.05

$$f(x) = a(m3(H2(H1(x))) + b3) \approx y$$

Softmax

$$a(k) = k$$
 $a(k) = 1/(1+e^{k})$

$$a([k]) = softmax([k])$$

Neural Networks

Deep Neural Networks (DNN) -has become very general Fully Connected Networks (FCN) -new Artificial Neural Networks (ANN) -old

Neural Networks

Multilayer Perceptron (MLP)

Deep Neural Network (DNN)

Edge = weighted connection (learned)

Nodes = inputs, hidden states

If doing regression: Don't do non-linearity for last layer.

If doing classification: sigmoid (binary) or softmax (multi-class)

Loss Function

MSE if doing regression

Cross entropy if classification: $-log(P(y_{true}))$

Update the weights to better fit this x -> y relationship (via an optimization algorithm that minimizes selected loss)

Sample a new (x, y) pair and repeat

Questions?

Short FCN Demo/results

What about sequences?

Recurrent Neural Networks

Demo Language model?

Learning a Function

Data containing input and output pairs

Learning a Function

$$y = mx + b$$

Learn some **parameters** that make this true for as many (x, y) pairs possible.

ML Models as Code

Linear Models (eg; Logistic Regression):

- * Very simple algorithms (SUMPRODUCT)
- * Fast and easy to train

Deep Neural Nets:

- * Arbitrarily complex algorithms
- * Slow to train, requires GPU hardware

Deep Learning History

Timeline Turing -> 80s Yann Lecun, Hinton, Schmidhuber, Bengio

Impractical compute obstacle

Impractical data obstacle

Training algorithm had flaws

Deep Learning History

90s -> 2000s

Training algorithm figured out

Lots of excitement "connectionists"

--SVM still winning vs. Neural Nets

Still huge compute obstacle

Still huge data obstacle

Deep Learning History

2010s -> present

Algorithms vastly expanded upon + researched

Compute solved w/ GPUs

Data solved w/ internet, smartphones, social media, ect..

Hinton students:

- -Illya now director of OpenAl
- -LeCun now director of FAIR
- -Alex Graves (deepmind)
- -Vlad Mnih (deepmind)

Michael Jordan students:

* Andrew NG

Deep Learning Today

Many fields currently **hijacked** by Deep Learning:

- * Computer Vision (CV)
- * Natural Language Processing (NLP)
- * Speech Recognition
- * Generative Modeling
- * Reinforcement Learning

Fields **created** by Deep Learning:

- * Adversarial Machine Learning
- * Adversarial Training
- * Neural Style Transfer
- * Automatic Video Generation and Alteration (?)