Recurrent Neural Network Language Models for Open Vocabulary Event-Level Cyber Anomaly Detection

Aaron Tuor¹, Ryan Baerwolf², Nicolas Knowles², Brian Hutchinson^{1,2}, Nicole Nichols¹ and Robert Jasper¹

¹Pacific Northwest National Laboratory, Richland, WA ²Western Washington University, Bellingham, WA

Overview	Models	Results and Analysis		
Motivation: It is impossible to manually inspect all	Anomaly score: $-\Sigma_i^k \log p_i$	Day-Level Detec	tion	
behavior on a network. Large organizations face many internal and external threats that can be mitigated or	Event Model (EM)	Model	Tokenization	AUC
woided entirely if immediately detected.		PCA		0.754
Goal: To effectively detect events of interest on a com-	P_1 P_2 P_{k-1} P_k	Isolation Forest		0.763
outer network and provide insight to human analysts.	$[LSTM] \rightarrow [LSTM] \rightarrow [LSTM] \rightarrow [LSTM]$	EM	Word	0.794
Approach: Train RNN language models on log line se-		BEM	Word	0.811
[uences and mag improbable sequences as anomalous.	<sos> x₁ x_{k-2} x_{k-1}</sos>	T-EM	Word	0.803
Background	• Standard long short-term memory RNN	T-BEM	Word	0.838
	$ullet p_i = P(x_i x_1, \dots, x_{i-1})$	EM	Character	0.754
Signature-based detection characterizes known at- acks. Limited ability to address novel attacks	Bidirectional Event Model (BEM)	BEM	Character	0.846
Anomaly-based detection maintains a statistical		T-EM	Character	0.809
baseline for normal behavior and flags events that deviate	$ \begin{bmatrix} r_1 \\ f \end{bmatrix} \begin{bmatrix} r_2 \\ f \end{bmatrix} \begin{bmatrix} r_{k-1} \\ f \end{bmatrix} \begin{bmatrix} r_k \\ f \end{bmatrix} $	T-BEM	Character	0.854

from the norm. Can have higher false positive rate.

Typically, user statistics over a window of events are aggregated into a feature vector and then standard anomaly detection techniques are applied.

• Bidirectional LSTM RNN

• Language models outperform baselines.

• Bidirectional and tiered modeling improve performance.

Event-Level Detection

Model	Word	Character
EM	0.932	0.935
BEM	0.895	0.979

Approach

- Treat an individual event as a sequence of tokens.
- At each step in the sequence, predict the next token.
- The event's anomaly score is the negative log probability.
- Update the weights using cross entropy loss.

Word-Level Tokenization

1,C625,U147,Negotiate,Batch,LogOn,Success

Character-Level Tokenization

1,C625,U147,Negotiate,Batch,LogOn,Success

$ullet p_i = P(x_i | x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_k)$

Tiered Event Model (TEM)

- Lower tier is EM or BEM.
- Upper tier model dynamics over user sessions.
- Context is provided to each lower level model.
- Hidden states of lower tier are averaged, concatenated to final cell state, fed into upper tier.

Experimental Setup

Metrics

Area under ROC curve. Baselines

• Isolation Forest

T-EM	0.948	0.927
T-BEM	0.902	0.969

- Significantly better performance than day-level.
- Tiered not always needed (sufficient context within line).
- Best results overall with character BEM.

ROC Curves

Variable length sequences - use recurrent neural networks.

System Overview

• PCA

Data

- Los Alamos National Laboratory dataset
- Real world de-identified data from the LANL network.
- Over 1,051,430,459 events (749 red team events)
- Train and dev : days 1-12
- Test : days 13-30

Training

• Red team labels are used to evaluate performance only. Training is done unsupervised for all models.

• Tuned with random search on train/dev.

Conclusion and Future Work

Event-level modeling

- gives better performance,
- avoids the need for feature engineering,
- is agnostic to log format.

Future Work

- Multi-source data streams.
- Interpretability
- Robustness to data poisoning